Arama:

Etiket Bulutu







‘atom’

Türkiye Nükleer enerjide ne durumda?

24.11.2012



Türkiye, 1960 yılında ABD Başkanı Dwight D. Eisenhower’ın yönetim döneminde başlatılan ‘Barış için Atom’ programına katılarak, ‘Nükleer Silahların Yayılmasına Karşı Anlaşma’yı (NPT) imzaladı. Bu program kapsamında 60’lı yıllarda; Çekmece Nükleer Araştırma Merkezi ile, bu merkezde 1 MW termal güçlü bir araştırma reaktörü kuruldu. Daha sonra bunu, 70’li yıllarda İTÜ Nükleer Enerji Enstitüsü’nde kurulan bir araştırma reaktörü izledi. Türkiye’nin nükleer enerji alanına gireceği beklentisiyle güçlü kadrolar yetişti. Ancak 1979 ‘Üç Mil Adası’ (‘Three Mile Island’) ve 1986 Çernobil nükleer santral kazaları, dünya kamuoylarında nükleer santralların güvenliğine karşı kuşkuların doğmasına ve nükleer teknolojinin dünya ölçeğinde durgun bir döneme girmesine yol açtı. Türkiye’ye bunun yansıması, ticari amaçla elektrik üreten bir nükleer santral kurma tasarımlarının gerçekleşememesi şeklinde oldu. Nükleer teknoloji alanındaki çalışmaların varlık nedeni zayıflayınca, bu alanda çalışan kadrolar sayıca azaldığı gibi, eğitim etkinlikleri de kaçınılmaz olarak gücünden kaybetti. Mevcut kadrolar, daha çok Türkiye Atom Enerjisi Kurumu’na bağlı araştırma merkezlerinde ve bazı üniversitelerimizin ilgili birimlerinde, araştırma ve eğitim etkinliklerini sürdürüyorlar. Bu alanda somut bir adımın atılması halinde, sözkonusu araştırma ve eğitim etkinliklerine hız verilmesi, bu alandaki kadroların genişletilmesi gerekecek.


kaynak: bilim ve teknik dergisi

Nükleer Santral Nedir?

19.03.2011

santral

Nükleer santraller enerji üretir. Fakat bu enerji üretimi bildiğimiz su veya yakıt santrallerinden farklı olarak, ısıyı elde etmek için nükleer reaktör yani atomu parçalandığı zaman açığa çok büyük enerji çıkaran ağır radyoaktif element olan Uranyum’lu sistemler kullanır. Bu sistemde Uranyum elementinin atom çekirdekleri parçalandığı için bu enerjiye nükleer enerji adı verilir. Ve bu sistemde zararlı olan nükleer enerjinin kendisi değil, eğer açığa sızarsa doğa ve insan dahil tüm canlılık için çok büyük radyasyon tehlikesi taşıyan uranyum elementidir.

Nükleer Santrallerde elde edilen buharın ısı enerjisi türbinde mekanik enerjiye ve mekanik enerji de jeneratörlerde elektrik enerjisine dönüştürülerek elektrik üretilir. Bütün nükleer reaktör tiplerinde bölünmeden açığa çıkan enerji buhar üretiminde kullanır ve bu buhar üretimi doğrudan reaktörün korunda ya da buhar üreteçlerinde yapılır. Ağır radyoaktif (Uranyum gibi) atomların bir nötronun çarpması ile daha küçük atomlara bölünmesi (fisyon) sonucu çok büyük bir miktarda enerji açığa çıkar. Yani nükleer santraller uranyumu “fisyon” yöntemiyle parçalar. Bu parçalanma reaktörlerin içinde gerçekleştirilir. Ama uranyum tehlikeli bir element olduğundan bu işlem çok özel kalkanlı bölümlerde gerçekleştirilir ve ömrü biten kapsüller de daha sonra atılmaz, özel koşullarda saklanır.

Nükleer santrallerde, nükleer maddelerin çevreye bırakılmamasını ve aynı zamanda nükleer reaksiyon sonucunda oluşan ısının her durumda reaktörden alınmasını garantiye alacak şekilde birçok güvenlik önlemi alınmaktadır. Nükleer maddelerin dışarıya salınmaması için kademeli koruma önlemleri, oluşan ısı fazlalığının alınması için ise yine kademeli ve yedekli sistem ve bileşenler bulunmaktadır.

Nükleer yakıt (yani Uranyum), seramik formunda, yaklaşık 1 cm çap ve yüksekliğinde silindirik parçaların arka arkaya dizilmesiyle yine silindirik biçimde kapalı sızdırmaz tüpler içindedir. Bu tüplerin binlercesinin, aralarından soğutucu suyun geçmesine izin verecek şekilde bir araya getirilmesi ile de reaktör kalbi oluşturulmuştur. Bu kalp ise paslanmaz çelikten yapılan bir basınç kabının içinde bulunur (Basınçlı veya Kaynar Sulu reaktörlerde). Basınç kabı ve buna bağlı sistemler ise reaktör korunak binası adı verilen betondan yapılmış kubbemsi yapının içinde bulunurlar. Dolayısıyla, yakıt içinde bulunan radyoaktif maddelerin dışarıya salınmalarını, seramik yakıt, yakıt tüpü, basınç kabı, çelik gömlek ve beton korunak binası, kademeli olarak engellemiş olurlar.

Bu devir daimi kontrol altına almak ya da durdurmak için yakıt çubuklarının arasına “kontrol çubukları“ yerleştirilir. Bu kontrol çubukları, açığa çıkan nötronları absorbe eder. Reaktör eğer devre dışı bırakılmak, yani kapatılmak isteniyorsa da söz konusu kontrol çubuklarının aktif hale getirilmesi gerekiyor. Böylece yeni atom çekirdeği parçalanmalarının önüne geçilir. Reaktör soğumaya başlar. Ancak bu soğuma işlemi, reaktörün kapasite ve enerji üretim miktarına bağlı olarak belirli bir zaman alıyor. Soğumanın devam edebilmesi için elektrikli pompalar vasıtasıyla su devir daiminin devam ettirilmesi gerekiyor.

Elektrik kesintisi durumundaysa durum kritik hâl alıyor. Reaktördeki basınç ve sıcaklık artmaya devam ediyor. Acil durum kalp soğutma sistemi devre dışı kalıyor. Eğer bu süreç durdurulamazsa yüksek basınç ve aşırı ısınma nedeniyle nükleer yakıt çubuklarının hasar görmesi, hatta tümüyle tahrip olması mümkün. İşte bu tahrip sürecine “NÜKLEER ERİME“ deniyor.

Buradaki tehlike şu ki, eğer çeşitli nedenlerle bu koruma sisteminde, özellikle yakıtı soğutma sisteminde arıza meydana gelirse, yakıt ısısı istenen düzeyde tutulamaz. Bu durumda kapsüllerdeki enerji hat safhaya ulaşarak patlamaya yol açar. Sürekli artan enerji kapsülleri de eritirse, uranyum suya ve çevreye yayılır ve en önemlisi etrafa müthiş derecede radyasyon yayılır.

Nükleer Erime durumunda, yakıt çubuklarının muhtevası, yani uranyum ve parçalanmayla ortaya çıkan cesium gibi radyoaktif parçacıklar reaktörün kalbine sızıyor. Bu ise reaktör içinde kontrol edilemeyecek nükleer patlamalar meydana gelme tehlikesini de beraberinde getiriyor. Patlamalar, reaktör içindeki ısı ve basıncın daha da artmasına yol açabiliyor. Bu süreç kontrolden çıkarsa, o zaman reaktörde büyük bir patlama meydana gelmesi de kaçınılmaz oluyor.

İşte 25 yıl önce Çernobil nükleer santralindeki patlama da aynen bu şekilde meydana gelmişti Böyle bir patlamanın ardından reaktördeki tüm radyoaktif parçacıkların atmosfere karışmasını önlemek artık imkansız hâle geliyor. Fukuşima nükleer santralinde de benzer bir felaketin meydana gelmesi için hemen hemen tüm koşullar gerçekleşmiş durumda. Depremin ardından elektrik kesintisi meydana geldi. Dizel elektrik jeneratörleri de henüz çalıştırılamadı. Kaldı ki, jeneratörler devreye girse bile çalışma süresi son derece kısıtlı olacak.

Reaktör suyunun ısısı sürekli artıyor. Buharlaşmaya başlayan su, reaktör içindeki basıncın da yükselmesine neden oluyor. Vanalar açılarak hafif radyoaktif buharın bir bölümü dışarı verilmeye çalışıldı ancak bunda sadece kısmen başarılı olundu. Eğer nükleer erime gerçekleşir ve reaktörde patlama meydana gelirse, bunun olumsuz sonuçları sadece Japonya’yı etkilemekle kalmayacak; aynı zamanda tüm Pasifik bölgesi, büyük bir nükleer facianın eşiğine sürüklenecek…

Elektrik Nedir?

12.09.2010

elektrik1

Her atom, bir çekirdeğin etrafındaki yörüngede dönen belirli sayıdaki elektronlardan oluşur. Başlangıçtaki elektron sayısı değiştirilmedikçe bu atom nötür sayılır. Eğer başlangıçtaki elektron sayısı +1 fazla ise bu atom eksi (negatif ) elektrik ile yüklüdür, eğer -1 eksik ise bu atom artı (pozitif) elektrik ile yüklüdür.

Bir cismin yapısında bulunan elektron sayısında bir değişiklik olduğu zaman, bu cisim elektrik ile yüklüdür deriz. Elektron ilavesinde bu cisim eksi elektrik ile yüklü olur, elektron kaybında ise bu cisim artı elektrik ile yüklü olur.

Aynı işaretli kutuplar birbirlerini iterler, zıt işaretli kutuplar ise birbirlerini çekerler. Bir A cisminin eksi elektrik ile yüklü olduğunu yani serbest elektronlar çoğunlukta ,diğer bir B cisminin ise artı elektrik ile yüklü yani serbet elektronlar azınlıkta olduğunu düşünelim ve şimdi bu iki cismi bir iletken yardımı ile birbirlerine bağlıyalım , bu durumda elektronların fazla olduğu A cisminden B cismine bir elektron akışı olur, işte buna elektrik akımı denir.

Özetlersek :
Serbest elektronların bir iletkenin içinde dolaşmasına elektrik akımı denir.

Mıknatısın yapısı nasıldır?

07.09.2010

miknatis

Mıknatısın manyetik özelliği atomlarının içindeki elektronların düzenlenişinden ileri gelir. Kimi maddelerde (demir, çelik, vs.) elektronlar öyle bir biçimde düzenlenmiştir ki, maddenin moleküllerinden her biri küçücük bir mıknatıstır. Her molekülün bir ucunda kuzeyi arayan bir kutup vardır. Öbür ucunda ise güneyi arayan bir kutup bulunur. Molekülü kendi ekseni çevresinde döndürebilseydik, kuzeyi arayan kutbunun Dünya’nın Kuzey Kutbu’nu gösterecek biçimde durduğunu görürdük.
Doğal bir demir parçasında bağımsız moleküller ayrı ayrı yönlere doğrudur. Onun için demir çubuk belli bir yönü göstermez. Çünkü moleküllerinin kimisi çubuğu bir yana, kimisi öbür yana çekmeye çalışır.
Bir demir çubuğu bir pusula iğnesi haline getirmek için, başka bir mıknatısın güney kutbunu çubuk boyunca gezdirmek yeterlidir.(Buradaki sürtme iki elinizi birbirine sürtme gibi olmayacak. Elimizi birbirine sürterken yukarı aşağı sürteriz. Mıknatısı demir çubuğa sürterken ise tek yönlü sürtmemiz gerekir. Ya sadece aşağıya ya da yukarıya doğru olmalı.) Mıknatıs böyle çubuk boyunca dolaştırılırken, çubuktaki moleküllerin kuzey kutupları dönüp mıknatısın güney kutbunu gösterecek biçimde durur. Mıknatıs çubuğun en uzak ucuna ulaştığında, çubuğun içindeki tüm moleküller aynı yönü gösterecektir. 0 zaman bütün çubuk tıpkı bağımsız moleküllerin hareket ettiği gibi hareket eder. Demir çubuk artık bir mıknatıs haline gelmiştir.

Kuantum Nedir?

19.08.2010

atom

Kuantum ne demektir?
Nedensellik (determinizm) kavramını nasıl etkilemiştir?
Elektronun ve ışığın yapısı tam olarak nasıldır?
Klasik fizikle Kuantum Fiziği arasındaki farklar nelerdir?

Şüphesiz ki Kuantum Teorisini açıklarken bunlara benzer birçok sorunun cevabını vermemiz gerekir. Konuyu daha iyi kavrayabilmek için ilk olarak temel birkaç kavramın tanımını yapmak da fayda var;

Kuantum ve Kuantum Mekaniği Nedir?

Kuantum kelimesi Almancadır ve “miktar” anlamına gelir. Max Planck tarafından enerjinin bölünmez en küçük parçası olarak tanımlamıştır. Kuantum Mekaniği ise “doğanın en küçük parçaları” ile ilgilenen bir kuramdır. Konu olarak atomlar, atom çekirdekleri, bu çekirdeklerin yapıları ve onları oluşturan parçacıklar ile bu parçacıklar arası etkileşimleri inceler.

Determinizm (Nedensellik);
Determinizm evrenin veya olayların ya da bir bilimsel disiplinin alanına giren tüm nesne ve olayların önceden belirlenmiş olduğu, onların öyle olmalarını zorunlu kılan birtakım yasa veya güçlerin etkisiyle meydana geldiklerini ileri süren öğretiye verilen addır.
Başka bir söyleyişle felsefe bağlamında, ahlâkın kapsamına giren seçimler de dahil, bütün olayların Özgür iradeyi ve insanın başka türlü davranabilme imkânını kabul etmeyen birtakım önceden var olan zorunlu nedenler zincirinin zorunlu olarak belirlediğini savunan teoridir. Buna göre insan iradesinin söz konusu zorunlu nedenler zincirine etkisi olmadığından olayların meydana gelişinde nedenlerin gücü bulunmaktadır. Böylece nedensellik ilkesi determinizmde temel İlke olarak kabul edilmektedir. Çünkü determinizme göre evrende akli bir yapı ve düzen vardır, dolayısıyla belirli nedenlerin veya durumların bilgisine sahip olunduğunda, o nedenlerin veya durumların ortaya çıkartacağı olayların bilgisini elde etmek mümkündür.

Kuantum kuramı determinizmi yerle bir etmiştir.Temelinde belirsizlik yatan bu kuram her şeyin belirli olduğunu savunan Nedensellik ilkesini bir elektronun yörüngeler arası geçişini belirleyen herhangi bir etki olmadığını ve bu geçişlerin tamamen belirsiz, saptanamaz bir şekilde olduğunu öne sürerek yıkar. Bu kurama göre bir elektronun klasik fizikteki hesaplamalarla aynı anda hem hızının hem de konumunun bulunması mümkün değildir. Bu kanıya ışığın yapısı incelenerek varılmıştır.Işığı oluşturan yapı bir parçacık mıdır? Yoksa bir dalga mıdır? Soruları klasik fiziğin açıklanmasında kullanılan dilin ötesinde bir açıklama gerektirdiği için bu kuramı açıklamak yeni bir dilin oluşmasına bağlıdır. Her iki ihtimalin yani ışığın yapısının hem dalga hem de parçacık olması ihtimali klasik fizikte açıklanamayacak bir durumdur. En son iddia edilen görüş ışığın ne parçacık ne de kendi başına bir dalga olduğudur. Kimya derslerinden alışık olduğumuz tüm maddelerin atomlardan oluşması ve bu atomlarında kendi içlerinde elektron, proton, nötron gibi parçalıklardan meydana gelmelerini Kuantum Mekaniği’nin merceğiyle bakarsak ve incelersek atomların parçalanmasının sonunun olmadığını görebiliriz. Bunu klasik fiziğin mercekleriyle baktığımızda anlamak mümkün değildir. Çekirdekteki nötron ve protonların daha küçük parçacıkları olan kuarklardan öteye bir parçacığın olup olmadığı sorusu bilim insanlarınca henüz cevap vermesi zor bir soru olarak görünmektedir.

Klasik fizik ile Kuantum Fiziği arasındaki fark nedir?
– Klasik fizikte uzay ve zaman süreklidir. Kuantum Fiziğinde süreksiz ve kesiklidir. Bu bakımdan Klasik fizikte nesnelerin özellikleri sürekli birer değişkendir. Oysa ki Kuantum Fiziğinde tüm bu değişkenler süreksiz olup ani sıçrayışlarla bir durumdan diğerine geçiş olur.
– Klasik fizikte determinizm yani “belirlilik” vardır. Oysa ki Kuantum fiziğinde olaylar determinist olarak gelişmezler. Daima belli bir olasılık yüzdesi bulunur.
– Klasik fizikte bulunan determinizm nesnellikle el ele gider. Yani, nesnelerin birbirlerinden bağımsız oldukları ve her bir nesnenin çevresinden yalıtılarak incelenebileceği inancı ve görüşü vardır. Oysa ki Kuantum Fiziğinde nesneler birer enerji dalgası olarak görüldüğünden klasik anlamda “nesnellik” kaybolmaktadır. Yerine bütünsel bir etkileşim ve evrende sıçramalarla değişim kavramları ileri sürülmektedir.
– Kuantum Kuramı gözlenen ile gözleyeni ayrı saymaz. Yani, biri diğerini etkileyip değiştirebilir. Bu bakımdan bağımsız nesne kavramı yok olduğu gibi etki edip dönüştürme yeteneğinin sadece canlılara ait olmadığı da söylenebilir.

Kuantum Fiziği’nin İnsan Hayatındaki Etkileri Nelerdir?
Bilim dünyasını doğduğu günden bugüne heyecanlandıran ve üzerinde daha fazla araştırma yapmaya yönelten Kuantum Fiziği’nin Klasik Fizik’ten birçok sebepten dolayı ayrılması,onun sınırlarının ve yapısının çok farklı oluşu ve hayatımıza girme çabalarını sindirmek yada onu alıştığımız bakış açısından farklı bir bakış açısıyla bakmamız gerekliliği çabuk gerçekleşmesini bekleyebileceğimiz bir durum değildir. Ama Kuantum’dan yola çıkılarak yapılan çalışmalar; Kuantum Düşünce Yöntemleri, Kuantum Tedavi Yöntemleri, Kuantum Fiziği temel alınarak yapılmış bilgisayarlar daha şimdiden hayatımızda önemli değişiklikler yapacak gibi görünüyor.

Kaynaklar;
zamandayolculuk.com Cetin BAL
kuzen.net “Kuantum Bilgisayar”
Cemal Yıldırım “Bilim Felsefesi”
Orhan KURULAN

Maddenin En Küçük Yapıtaşı Atom mu?

18.08.2010

atom1

Etrafımızda gördüğümüz tüm maddelerden sorumlu bu “minik” nesneler neye benzer? Herşeyden önemlisi, acaba onların da yapıtaşları var mı?

Aslına bakarsanız, bu sorular yüzyıllar öncesinden de sorulmuş. Hatta “atom” sözcüğünün ilk ortaya çıkışı İ.Ö. 460 yılına kadar uzanıyor. O dönemde yaşamış Demokritus adlı bir filozof, bir elmayı örnek vererek atomu ve anlamını açıklamış: Bir elma alın ve onu ikiye bölün. Sonra bu yarım elmalardan birini tekrar ikiye bölün ve böylece sürdürün… Demokritus’a göre, bu şekilde yarım parçaları bölmeye devam ederseniz, sonunda öyle bir an gelecek ki, artık bölemeyeceğiniz kadar küçük bir parça elde edeceksiniz (ama bıçağınız kesemediği için değil, bölmek mümkün olmadığı için!). İşte, bölünmesi olanaksız bu parçaya Demokritus Yunanca’da ‘bölünemez” anlamına gelen “atomos” adını vermiş.

Demokritus, bu kavramı ortaya atmış atmasına ama bunu o dönemin diğer bilim adamlarına inandıramamış. Özellikle de dönemin en büyük filozofu Aristo’ya. Zaten Aristo reddedince, bir bildiği vardır diye diğerleri de inanmamış. Hatta Demokritus öldükten yüzyıllar sonra bile kimse atomdan bahsetmemiş.
Ta ki, 2000 yıl kadar sonraya, yani 1800’li yılların başına kadar. Bilim adamları maddenin doğasını anlamaya yönelik çalışmaları sırasında ister istemez bu minik parçacıklarla karşılaşmışlar. İngiliz bilim adamı Dalton, deneyleri sırasında, maddeyi oluşturan ama yapısını tanımlayamadığı bu temel ögelere ilişkin ilk kanıtları elde etmiş. Ondan sonra da keşifler ardı sıra devam etmiş.
Atomun varlığı kanıtlandıktan sonra da, yapısını anlamaya yönelik bir çok kuram ortaya atılmış. Bunlardan ilki J. J. Thomson adlı bir İngiliz fizikçi’den geliyor

Thomson, 1897 yılında atomun bir parçası olan eksi yüklü elektronları keşfetmiş. Thomson’a göre atomun içinde eksi yüklü elektronları dengeleyecek artı yüklü parçacıklar olması gerekiyordu. Thomson, atomu bir “üzümlü kek”e benzetmişti: Üzümler eksi yüklü elektronlar, kekin diğer kısımları ise artı yüklü madde.
atom2
Bundan daha doğru bir modeli, 1911 yılında atomun içinde artı yüklü bir çekirdeğin olması gerektiğini keşfeden Ernest Rutherford geliştirmiş. Rutherford’un atom modeli, Güneş Sistemi’mizin yapısına benziyor. Ortada Güneş, yani artı yüklü çekirdek ve çevresinde dolanan gezegenler, yani eksi yüklü elektronlar. Rutherford’un bu modeline göre çekirdek atomun çok küçük bir parçası: Örneğin atomun boyutunu Dünya kadar büyütsek bile içindeki çekirdek en fazla bir futbol stadyumu kadar kalıyordu. Rutherford daha da önemli bir adım atarak, çekirdek içinde artı yüklü parçacıkları yani protonları keşfetmiş ve protonların elektronlardan 1836 kez daha ağır olduğunu bulmuş.

Fakat bu model de bazı kuramsal sorunlar çıkarmış. 1912 yılında Danimarkalı fizikçi Niels Bohr, bu kuramsal sorunları çözecek bir model oluşturmuş. Bohr’un atom modelinde, yine ortada artı yüklü bir çekirdek, fakat sadece belli yörüngelerde dolanabilen eksi yüklü elektronlar var. Bundan sonraki gelişmeler, Bohr’un atom modelini düzeltmeye yönelik. Bu gelişmelerden biri, çekirdekte artı yüklü proton dışında, yüksüz “nötron” adı verilen parçacıkların da olduğu. Nötronları da 1932 yılında, James Chadwick, kendisinin yaptığı derme çatma bir detektörle keşfetmiş.

Atomun tam bir modelini oluşturmadaki en önemli yöntem, Kuantum Mekaniği adı verilen fizik dalının gelişmesiyle oldu. Bugünkü bilgilerimizin tamamı bu fizik dalının gelişmesiyle elde edildi. Artık bugün atom ve yapısı hakkında epeyce bilgiye sahibiz. Kuantum kuramına göre, atom, artı yüklü bir çekirdek ve etrafında dalga gibi de hareket edebilen elektronların bulutundan oluşan minik bir “nesne”…
atom31
Atomdan Öte Köy Var Mı?
Aslında, atomlar her ne kadar maddenin yapıtaşları olarak tanımlansa da, gördüğümüz gibi onların da daha küçük yapıtaşları var. Demokritus’un elma örneğinde bir bıçak değil de, günümüzün modern mikroskoplarını kullandığımızı düşünelim. Tabii ki, elmayı keserek değil, büyüterek yapabiliriz bunu. Elmanın bir parçasının görüntüsünü mikroskop altında büyütelim. Önce elmanın detaylarına, daha büyütmeye devam edersek molekül adını verdiğimiz atom gruplarına ulaşırız. Moleküller, iki ya da daha fazla atomun “kimyasal bağ” adı verilen işlemle biraraya gelmesi sonucu oluşur. İşte, madde dediğimiz nesnelerin katı (elma gibi), sıvı (su gibi) veya gaz (hava gibi) olmasını sağlayan şey, bu moleküllerin biraraya geliş biçimi. Moleküller birbirleriyle çok sıkı sıkıya bağlanmış ve yerlerinden kıpırdayamıyorlarsa madde katı halde; atomlar, kopmamak şartıyla birbirleri etrafında hareket edebiliyorlarsa sıvı halde; atomların oluşturduğu moleküller serbestçe hareket edebiliyorlarsa gaz halinde oluyor.
atom4
Demek ki, biraz daha büyütürsek atomlara ulaşacağız. Tanımımız gereği, atomlar madde değil. Çünkü madde olabilmesi için en azından katı, sıvı veya gaz halinde olabilmeli. Fakat, bu hallerden birisi için kimyasal bir bağa, yani en az iki atoma gereksinim var. Dolayısıyla tek başına bir atom ne katı, ne sıvı, ne de gaz yani ne de madde. Ancak biraraya gelirlerse madde oluşturuyorlar. Bu anlamıyla maddenin yapıtaşı! Atomu, mikroskobumuzda büyütmeye devam ettiğimizde (aslında bunu yapabilecek mikroskoplar yok, fakat bilim adamları başka işlemlerle bunu yapabiliyorlar. Biz yine de yapabildiğimizi varsayalım) başta da söylediğimiz gibi, Güneş Sistemi’ne benzer bir yapıyla karşılaşıyoruz. Ortada bir çekirdek ve etrafında dolanan elektronlar. Elektron bulutundan geçip içeri dalıyoruz ve merkezde yer alan çekirdeği görüyoruz. Büyütmeye devam ediyoruz ve çekirdeğin içine bakıyoruz. Burada nötron ve protonlarla karşılaşıyoruz.
atom51

Elektronlar eksi yüklü ve hafif, protonlar artı yüklü ve ağır, nötronlar ise yüksüz ve ağır parçacıklar. Yük ve kütle gibi kavramlar atomları birbirinden ayırdetmekte kullanılıyor. Çünkü çok sayıda atom var ve bunların hepsinin, elektron, proton ve nötron sayıları farklı. Bir atomdaki elektronların sayısı, o atomun atom numarasını (AN) veriyor, bu sayı aynı zamanda o atomun çekirdeğindeki proton sayısına da eşit. Proton ve nötron sayılarının toplamı ise atomun kütle numarasını (KN) veriyor. Örneğin en basit yapıya sahip atomlardan biri olan helyumun atom numarası 2 ve kütle numarası 4 (yani 2 proton, 2 elektron ve 2 nötronu var) ve 4He2 şeklinde simgeleniyor. Havada bulunan oksijen atomunun ise atom numarası 8 ve kütle numarası 16 vb…
Daha sonuna gelmedik. Son bir gayretle proton ve nötronun da içine bakıyoruz ve orada da daha temel parçacıklar görüyoruz. Bunlara da “kuark” adı veriliyor. İşte, maddenin içine yolculuğumuzun “şimdilik” son durağı burasıymış gibi görünüyor. Buradan daha ileri gitmemiz mümkün değil.

Artık bir sonuç çıkarabiliriz: Maddenin en küçük yapıtaşı kuarklar. Kuarklar bir araya gelerek proton ve nötronları, bunlar ve elektronlar biraraya gelerek atomları, atomlar molekülleri, moleküller de maddeyi (elma örneği gibi) oluşturuyor.
Gördüğümüz kadarıyla atomdan öteye köy var, yani kuarklar! Peki kuarklardan öteye? Bunu henüz bilemiyoruz. Ancak bu, hiç bilemeyeceğimiz anlamına gelmiyor. Demokritus’tan bugüne katettiğimiz yol, bilimin, her alanda olduğu gibi, maddenin temel yapısını anlamada da bize vereceği daha pek çok şey olduğunun bir göstergesi.

Radyasyon nedir?

01.08.2010

radyasyon

Bilindiği gibi maddenin temel yapısını atomlar meydana getirir.
Atom ise, proton ve nötronlardan oluşan bir çekirdek ile bunun çevresinde dönmekte olan elektronlardan oluşmaktadır.

Herhangi bir maddenin atom çekirdeğindeki nötronların sayısı, proton sayısına göre oldukça fazla ise; bu tür maddeler kararsız bir yapı göstermekte ve çekirdeğindeki nötronlar alfa, beta, gama gibi çeşitli ışınlar yaymak suretiyle parçalanmaktadırlar.
Çevresine bu şekilde ışın saçarak parçalanan maddelere ‘radyoaktif madde’, çevreye yayılan alfa, beta ve gama gibi ışınlara ise ‘radyasyon’ adı verilmektedir..

Radyasyonun Zararları
X ışınları, ultraviyole ışınlar, görülebilen ışınlar, kızıl ötesi ışınlar, mikro dalgalar, radyo dalgaları ve manyetik alanlar, elektromanyetik spektrumun parçalarıdır.
Elektromanyetik parçaları, frekans ve dalga boyları ile tanımlanır.
Ultraviyole ve X ışınları çok yüksek frekanslarda olduğundan, elektromanyetik parçalar kimyasal bağları kırabilecek enerjiye sahiptir. Bu bağların kırılması iyonlaşma diye tanımlanır.

İyonlaşabilen elektromanyetik radyasyonları, hücrenin genetik materyali olan DNA’yı parçalayabilecek kadar enerji taşımaktadır.
DNA’nın zarar görmesi ise hücreleri öldürmektedir. Bunun sonucunda doku zarar görür.
DNA’da çok az bir zedelenme, kansere yol açabilecek kalıcı değişikliklere sebep olur.

Maden işletme yataklarında, doğal su kaynakları içerisinde ve toprakta; gerek insan faaliyetleri sonucu, gerekse doğal olarak bulunan radyoaktif maddeler besin zincirine (bitkilere) girerek, oradan da hayvan ve insanlara geçmek suretiyle ölümle sonuçlanan çeşitli hastalıklara sebep olmaktadır.

Radyoaktif kirleticiler özellikle insan, hayvan ve bitki sağlığına olumsuz etkiler yaparak çevreyi ve ekolojik dengeyi bozmaktadır. Ayrıca radyasyon, canlılarda genetik değişikliklere de yol açmaktadır.
Radyasyonun etkisi; cins, yaş ve organa göre değişmektedir.
Çocuklar ve büyüme çağındaki gençler ile özellikle göz en fazla etkilenen organ olup; görme zayıflığı, katarakt ve göz uyumunun yavaşlamasına sebep olmaktadır. Deri ise, radyasyona karşı daha dayanıklıdır.

Radyasyonun zararları genellikle zamanla ortaya çıkan bir etki olup, ani etki ancak atom bombalarının yol açtığı ölümler ve yüksek radyasyondaki yanmalar şeklinde kendini göstermektedir.

Geçmişte yapılan nükleer silah denemelerinden dolayı radyoaktif maddelerle yüklenmiş toz bulutları, atmosferin yüksek tabakalarına ve stratosfere yerleşerek, radyoaktif yağışlar halinde yavaş yavaş yeryüzüne inmekte ve çevrenin,
özellikle yüzeysel suların kirlenmesine sebep olmaktadır. 1960’lı yıllarda en yüksek seviyeye çıkmış olan radyoaktif yağışlarda, nükleer silah denemelerinin havada yapılmasının yasaklanması sonucu, 1970’li yıllardan sonra azalma görülmüştür.

Çevre sorunları sınır tanımaksızın artmakta ve çeşitli kirleticiler kilometrelerce uzaklara taşınarak etki gösterebilmektedir.
Örneğin; Çernobil kazası nedeni ile yayılan radyoaktif atıkların, toprak ürünlerinde yol açtığı kirlilik bilinmektedir.
Çernobil reaktöründe oluşan kazada, doğrudan etki sonucu 30’dan fazla insan hayatını kaybetmiş, yüzlerce kişi yaralanmış, sakatlanmış ve hastalanmıştır. Binlerce insan ise belirtileri sonradan çıkacak olan genetik etkilerle,
nesilden nesile geçebilecek kalıcı izler taşımaktadır.
Çernobil’deki kaza sebebiyle atmosfere karışan radyoaktif maddelerin, atmosferik hareketlerle: uzaklara taşınmasıyla,
düştükleri yerlerde radyasyona sebep olmuştur.
Bu olaydan en çok ülkemizin Çernobil’e yakın olan Karadeniz Bölgesi’nin etkilendiği tespit edilmiştir

Bir kerede alınan radyasyon dozları için etkileri:

0.12 mSv Zararsız Çernobil kazasında yakın çevrede alınan tahliye dozu
0.8-1.2 mSv Zararsız Akciğer röntgeni çekiminde alınan doz
50-150 mSv Zararsız Troid up-take’i için alınan doz
250 mSv Zararsız Nükleer kaza şartlarında alınmasına izin verilen doz
1.000 mSv Hâlsizlik Merkez Çernobil olmak üzere 1 Km’lik bir yarıçap içinde alınmış olan doz
2.000 mSv Radyasyon Hastalığı Başağrısı, kusma, cildde kızarma ve yara, kanser başlangıcı
5.000 mSv %50 ölüm İstatiksel olarak ölüm riski
10.000 mSv Ölümcül doz Ani ölüm

 

Kutup ışıkları nedir?

31.05.2010

kutupisiklari

Kutup ışıkları, ya da auroralar, genellikle kutup bölgelerinde görülen bir gece ışıması. Auroralar, gökyüzündeki doğal ışık görüntüleridir. Genelde gece görülen kutup ışıkları, çıplak gözle de izlenebilir Kuzey Yarımküre’deki aurora görüntüsüne aurora borealis, Güney Yarımküre’dekine de aurora australis denir. Auroralar, güneşin dünya atmosferi üzerindeki etkilerinin en belirgin şekilde görülebilenidir. Çoğu kutup ışığı yüksek kuzey ve güney enlemlerinde görülür.

Özellikleri
Özellikle yay, bulut ve çizgi şeklinde oluşurlar. Bazıları hareket eder, parlaklaşır ya da aniden yanıp sönerler. Yeşil, auroraların en yaygın rengidir. Ancak çok yükseklerde olan kutup ışıkları kırmızı ya da pembe olabilirler. Çoğu aurora atmosferin 100 ile 1000 km aralığında oluşur. Bazıları atmosfer boyunca binlerce kilometre yatay uzunluğa sahip olabilir.

Oluşumları
Kutup ışığı görüntüleri, Güneş’ten gelen solar rüzgarlardaki yüklü parçacıkların atmosferle etkileşmesi sonucu oluşur. Bu parçacıkların bazıları dünyanın manyetik alanına kapılır. Bu parçaların çoğu dünyanın manyetik kutuplarına çekilirler. Bu parçacıklar atmosferdeki moleküllerle çarpıştıklarında enerji açığa çıkar. Bu enerjinin bir kısmı da “aurora”lar şeklinde salınır.

Zamanları
Kutup ışıkları sıklıkla 11 yıllık güneş döngüsünün en yoğun zamanında görülür. Bu dönemde, güneş yüzeyindeki koyu lekeler sayıca artar. Güneşteki şiddetli patlamalar güneş lekeleriyle ilgilidir. Solar patlamalardan çıkan elektronlar ve protonlar, dünya atmosferiyle etkileşir. Bu etkileşim oldukça parlak auroralar yaratır. Bu aynı zamanda dünyanın manyetik alanında güçlü dalgalanmalar meydana getirir; (manyetik fırtına). Bu fırtınalar esnasında auroralar kutup bölgelerinden ekvatora doğru kayar.

Neden kar yağıyor ?

25.12.2009

karyagisi1

Kış aylarında güneş ışınları çok güçlü olmadığı için, bulutların bulundukları yüksekliklerde hava sıcaklığı çok düşük olunca, yükselen su buharı, sublime denilen şekilde sıvı hale geçmeden, bu aşamayı atlayarak doğrudan buz kristali haline dönüşür. 0. 1 milimetre çapındaki buz kristalleri birbirlerine yapışarak kar tanelerini oluştururlar. Eğer bulut ile yer arasındaki hava sıcaksa bu kar taneleri yere düşene kadar yağmur tanesi haline dönüşebilirler, ama soğuksa yere kadar kar tanesi olarak inmeyi başarabilirler. Hafiflikleri nedeniyle yere o kadar yavaş inerler ki 3000 metreden inmeleri 2 saat alabilir. Bazen bulutun altındaki sıcaklık öyledir ki, bir kısmı kar, bir kısmı yağmur damlası halinde düşerler, biz buna ´sulu sepken´ diyoruz. Yani yağmur veya kar yağmasını belirleyen ana unsur, bulut ile yer arasındaki hava sıcaklığıdır.

Genel kanının aksine kar yağması havayı ısıtmaz, aksine ısınan hava karın yağmasına sebep olur. Çok soğuk havanın içine su alma kapasitesi daha azdır. İçine alamadığı su ya ´don´ şeklinde yeryüzünde kalır ya da ´kırağı´ oluşur. Bu şartlarda kar kesinlikle oluşamaz. Hava 3 derece gibi biraz ısınınca, su buharı yeryüzünden yükselebilir, çok yüksekliklerdeki soğuk hava tabakalarına ulaşabilir ve kar yağışı meydana gelebilir. Biz de sanki kar yağdığı için hava ısınmış gibi algılarız. Kar tanesinin oluşumu hakikaten bir tabiat mucizesidir.
kartanesi1

Gerçi bazı kayak merkezlerinde, kar yağışı yetersiz olduğu zamanlarda suni kar üretiliyor ama bu görüldüğü kadar kolay değil. Doğal kar tanelerinin ortasında çekirdek olarak toz parçacıklarının olduğunu biliyoruz. Eğer bunlar olmazsa saf su -40 derecede bile kristalleşemiyor. İlk olarak 1975 yılında Berkeley, California Üniversitesinden Prof. Steve Lindow ´snomax´ denilen bir proteini toz parçacıkları yerine kullanarak suni kar üretmeyi başardı. Bu madde sayesinde daha hafif ve kuru kar tanelerinin üretilmesi sağlandı ve Norveç´te yapılan 1994 kış olimpiyatlarında çok yaygın olarak kullanıldı. Kar kristalleri altıgen bir şekil içindedirler. Her bir koldan 3 ve 12´li kollar çıkar. Bu dizilişin sebebinin oksijen atomlarının diziliş şekli olduğu sanılıyor. Dolu yağışı daha ziyade ılıman iklimlerde ve bahar aylarında görülür. Isınan hava ile yükselen su buharı, hava akımları ile daha da yükselerek 12.000 metre civarında -50 derece hava sıcaklığında buz kristallerine dönüşür. Buradaki güçlü hava akımları ile bu buz kristalleri de birleşerek buz tanelerini oluşturur. Bu buz taneleri ağırlıkları nedeni ile o kadar hızlı düşerler ki bulut ile yer arasındaki sıcaklık ne olursa olsun eriyecek zaman bulamazlar. Çapı 5 milimetreden büyük dolular halinde yeryüzüne ulaşırlar. Aslında tüm bu şartların oluşması çok enderdir ve bu nedenle dolu yağışı hem çok az görülür, hem de çok kısa sürer.