Arama:

Etiket Bulutu







‘kuark’

Kuantum Nedir?

19.08.2010

atom

Kuantum ne demektir?
Nedensellik (determinizm) kavramını nasıl etkilemiştir?
Elektronun ve ışığın yapısı tam olarak nasıldır?
Klasik fizikle Kuantum Fiziği arasındaki farklar nelerdir?

Şüphesiz ki Kuantum Teorisini açıklarken bunlara benzer birçok sorunun cevabını vermemiz gerekir. Konuyu daha iyi kavrayabilmek için ilk olarak temel birkaç kavramın tanımını yapmak da fayda var;

Kuantum ve Kuantum Mekaniği Nedir?

Kuantum kelimesi Almancadır ve “miktar” anlamına gelir. Max Planck tarafından enerjinin bölünmez en küçük parçası olarak tanımlamıştır. Kuantum Mekaniği ise “doğanın en küçük parçaları” ile ilgilenen bir kuramdır. Konu olarak atomlar, atom çekirdekleri, bu çekirdeklerin yapıları ve onları oluşturan parçacıklar ile bu parçacıklar arası etkileşimleri inceler.

Determinizm (Nedensellik);
Determinizm evrenin veya olayların ya da bir bilimsel disiplinin alanına giren tüm nesne ve olayların önceden belirlenmiş olduğu, onların öyle olmalarını zorunlu kılan birtakım yasa veya güçlerin etkisiyle meydana geldiklerini ileri süren öğretiye verilen addır.
Başka bir söyleyişle felsefe bağlamında, ahlâkın kapsamına giren seçimler de dahil, bütün olayların Özgür iradeyi ve insanın başka türlü davranabilme imkânını kabul etmeyen birtakım önceden var olan zorunlu nedenler zincirinin zorunlu olarak belirlediğini savunan teoridir. Buna göre insan iradesinin söz konusu zorunlu nedenler zincirine etkisi olmadığından olayların meydana gelişinde nedenlerin gücü bulunmaktadır. Böylece nedensellik ilkesi determinizmde temel İlke olarak kabul edilmektedir. Çünkü determinizme göre evrende akli bir yapı ve düzen vardır, dolayısıyla belirli nedenlerin veya durumların bilgisine sahip olunduğunda, o nedenlerin veya durumların ortaya çıkartacağı olayların bilgisini elde etmek mümkündür.

Kuantum kuramı determinizmi yerle bir etmiştir.Temelinde belirsizlik yatan bu kuram her şeyin belirli olduğunu savunan Nedensellik ilkesini bir elektronun yörüngeler arası geçişini belirleyen herhangi bir etki olmadığını ve bu geçişlerin tamamen belirsiz, saptanamaz bir şekilde olduğunu öne sürerek yıkar. Bu kurama göre bir elektronun klasik fizikteki hesaplamalarla aynı anda hem hızının hem de konumunun bulunması mümkün değildir. Bu kanıya ışığın yapısı incelenerek varılmıştır.Işığı oluşturan yapı bir parçacık mıdır? Yoksa bir dalga mıdır? Soruları klasik fiziğin açıklanmasında kullanılan dilin ötesinde bir açıklama gerektirdiği için bu kuramı açıklamak yeni bir dilin oluşmasına bağlıdır. Her iki ihtimalin yani ışığın yapısının hem dalga hem de parçacık olması ihtimali klasik fizikte açıklanamayacak bir durumdur. En son iddia edilen görüş ışığın ne parçacık ne de kendi başına bir dalga olduğudur. Kimya derslerinden alışık olduğumuz tüm maddelerin atomlardan oluşması ve bu atomlarında kendi içlerinde elektron, proton, nötron gibi parçalıklardan meydana gelmelerini Kuantum Mekaniği’nin merceğiyle bakarsak ve incelersek atomların parçalanmasının sonunun olmadığını görebiliriz. Bunu klasik fiziğin mercekleriyle baktığımızda anlamak mümkün değildir. Çekirdekteki nötron ve protonların daha küçük parçacıkları olan kuarklardan öteye bir parçacığın olup olmadığı sorusu bilim insanlarınca henüz cevap vermesi zor bir soru olarak görünmektedir.

Klasik fizik ile Kuantum Fiziği arasındaki fark nedir?
– Klasik fizikte uzay ve zaman süreklidir. Kuantum Fiziğinde süreksiz ve kesiklidir. Bu bakımdan Klasik fizikte nesnelerin özellikleri sürekli birer değişkendir. Oysa ki Kuantum Fiziğinde tüm bu değişkenler süreksiz olup ani sıçrayışlarla bir durumdan diğerine geçiş olur.
– Klasik fizikte determinizm yani “belirlilik” vardır. Oysa ki Kuantum fiziğinde olaylar determinist olarak gelişmezler. Daima belli bir olasılık yüzdesi bulunur.
– Klasik fizikte bulunan determinizm nesnellikle el ele gider. Yani, nesnelerin birbirlerinden bağımsız oldukları ve her bir nesnenin çevresinden yalıtılarak incelenebileceği inancı ve görüşü vardır. Oysa ki Kuantum Fiziğinde nesneler birer enerji dalgası olarak görüldüğünden klasik anlamda “nesnellik” kaybolmaktadır. Yerine bütünsel bir etkileşim ve evrende sıçramalarla değişim kavramları ileri sürülmektedir.
– Kuantum Kuramı gözlenen ile gözleyeni ayrı saymaz. Yani, biri diğerini etkileyip değiştirebilir. Bu bakımdan bağımsız nesne kavramı yok olduğu gibi etki edip dönüştürme yeteneğinin sadece canlılara ait olmadığı da söylenebilir.

Kuantum Fiziği’nin İnsan Hayatındaki Etkileri Nelerdir?
Bilim dünyasını doğduğu günden bugüne heyecanlandıran ve üzerinde daha fazla araştırma yapmaya yönelten Kuantum Fiziği’nin Klasik Fizik’ten birçok sebepten dolayı ayrılması,onun sınırlarının ve yapısının çok farklı oluşu ve hayatımıza girme çabalarını sindirmek yada onu alıştığımız bakış açısından farklı bir bakış açısıyla bakmamız gerekliliği çabuk gerçekleşmesini bekleyebileceğimiz bir durum değildir. Ama Kuantum’dan yola çıkılarak yapılan çalışmalar; Kuantum Düşünce Yöntemleri, Kuantum Tedavi Yöntemleri, Kuantum Fiziği temel alınarak yapılmış bilgisayarlar daha şimdiden hayatımızda önemli değişiklikler yapacak gibi görünüyor.

Kaynaklar;
zamandayolculuk.com Cetin BAL
kuzen.net “Kuantum Bilgisayar”
Cemal Yıldırım “Bilim Felsefesi”
Orhan KURULAN

Maddenin En Küçük Yapıtaşı Atom mu?

18.08.2010

atom1

Etrafımızda gördüğümüz tüm maddelerden sorumlu bu “minik” nesneler neye benzer? Herşeyden önemlisi, acaba onların da yapıtaşları var mı?

Aslına bakarsanız, bu sorular yüzyıllar öncesinden de sorulmuş. Hatta “atom” sözcüğünün ilk ortaya çıkışı İ.Ö. 460 yılına kadar uzanıyor. O dönemde yaşamış Demokritus adlı bir filozof, bir elmayı örnek vererek atomu ve anlamını açıklamış: Bir elma alın ve onu ikiye bölün. Sonra bu yarım elmalardan birini tekrar ikiye bölün ve böylece sürdürün… Demokritus’a göre, bu şekilde yarım parçaları bölmeye devam ederseniz, sonunda öyle bir an gelecek ki, artık bölemeyeceğiniz kadar küçük bir parça elde edeceksiniz (ama bıçağınız kesemediği için değil, bölmek mümkün olmadığı için!). İşte, bölünmesi olanaksız bu parçaya Demokritus Yunanca’da ‘bölünemez” anlamına gelen “atomos” adını vermiş.

Demokritus, bu kavramı ortaya atmış atmasına ama bunu o dönemin diğer bilim adamlarına inandıramamış. Özellikle de dönemin en büyük filozofu Aristo’ya. Zaten Aristo reddedince, bir bildiği vardır diye diğerleri de inanmamış. Hatta Demokritus öldükten yüzyıllar sonra bile kimse atomdan bahsetmemiş.
Ta ki, 2000 yıl kadar sonraya, yani 1800’li yılların başına kadar. Bilim adamları maddenin doğasını anlamaya yönelik çalışmaları sırasında ister istemez bu minik parçacıklarla karşılaşmışlar. İngiliz bilim adamı Dalton, deneyleri sırasında, maddeyi oluşturan ama yapısını tanımlayamadığı bu temel ögelere ilişkin ilk kanıtları elde etmiş. Ondan sonra da keşifler ardı sıra devam etmiş.
Atomun varlığı kanıtlandıktan sonra da, yapısını anlamaya yönelik bir çok kuram ortaya atılmış. Bunlardan ilki J. J. Thomson adlı bir İngiliz fizikçi’den geliyor

Thomson, 1897 yılında atomun bir parçası olan eksi yüklü elektronları keşfetmiş. Thomson’a göre atomun içinde eksi yüklü elektronları dengeleyecek artı yüklü parçacıklar olması gerekiyordu. Thomson, atomu bir “üzümlü kek”e benzetmişti: Üzümler eksi yüklü elektronlar, kekin diğer kısımları ise artı yüklü madde.
atom2
Bundan daha doğru bir modeli, 1911 yılında atomun içinde artı yüklü bir çekirdeğin olması gerektiğini keşfeden Ernest Rutherford geliştirmiş. Rutherford’un atom modeli, Güneş Sistemi’mizin yapısına benziyor. Ortada Güneş, yani artı yüklü çekirdek ve çevresinde dolanan gezegenler, yani eksi yüklü elektronlar. Rutherford’un bu modeline göre çekirdek atomun çok küçük bir parçası: Örneğin atomun boyutunu Dünya kadar büyütsek bile içindeki çekirdek en fazla bir futbol stadyumu kadar kalıyordu. Rutherford daha da önemli bir adım atarak, çekirdek içinde artı yüklü parçacıkları yani protonları keşfetmiş ve protonların elektronlardan 1836 kez daha ağır olduğunu bulmuş.

Fakat bu model de bazı kuramsal sorunlar çıkarmış. 1912 yılında Danimarkalı fizikçi Niels Bohr, bu kuramsal sorunları çözecek bir model oluşturmuş. Bohr’un atom modelinde, yine ortada artı yüklü bir çekirdek, fakat sadece belli yörüngelerde dolanabilen eksi yüklü elektronlar var. Bundan sonraki gelişmeler, Bohr’un atom modelini düzeltmeye yönelik. Bu gelişmelerden biri, çekirdekte artı yüklü proton dışında, yüksüz “nötron” adı verilen parçacıkların da olduğu. Nötronları da 1932 yılında, James Chadwick, kendisinin yaptığı derme çatma bir detektörle keşfetmiş.

Atomun tam bir modelini oluşturmadaki en önemli yöntem, Kuantum Mekaniği adı verilen fizik dalının gelişmesiyle oldu. Bugünkü bilgilerimizin tamamı bu fizik dalının gelişmesiyle elde edildi. Artık bugün atom ve yapısı hakkında epeyce bilgiye sahibiz. Kuantum kuramına göre, atom, artı yüklü bir çekirdek ve etrafında dalga gibi de hareket edebilen elektronların bulutundan oluşan minik bir “nesne”…
atom31
Atomdan Öte Köy Var Mı?
Aslında, atomlar her ne kadar maddenin yapıtaşları olarak tanımlansa da, gördüğümüz gibi onların da daha küçük yapıtaşları var. Demokritus’un elma örneğinde bir bıçak değil de, günümüzün modern mikroskoplarını kullandığımızı düşünelim. Tabii ki, elmayı keserek değil, büyüterek yapabiliriz bunu. Elmanın bir parçasının görüntüsünü mikroskop altında büyütelim. Önce elmanın detaylarına, daha büyütmeye devam edersek molekül adını verdiğimiz atom gruplarına ulaşırız. Moleküller, iki ya da daha fazla atomun “kimyasal bağ” adı verilen işlemle biraraya gelmesi sonucu oluşur. İşte, madde dediğimiz nesnelerin katı (elma gibi), sıvı (su gibi) veya gaz (hava gibi) olmasını sağlayan şey, bu moleküllerin biraraya geliş biçimi. Moleküller birbirleriyle çok sıkı sıkıya bağlanmış ve yerlerinden kıpırdayamıyorlarsa madde katı halde; atomlar, kopmamak şartıyla birbirleri etrafında hareket edebiliyorlarsa sıvı halde; atomların oluşturduğu moleküller serbestçe hareket edebiliyorlarsa gaz halinde oluyor.
atom4
Demek ki, biraz daha büyütürsek atomlara ulaşacağız. Tanımımız gereği, atomlar madde değil. Çünkü madde olabilmesi için en azından katı, sıvı veya gaz halinde olabilmeli. Fakat, bu hallerden birisi için kimyasal bir bağa, yani en az iki atoma gereksinim var. Dolayısıyla tek başına bir atom ne katı, ne sıvı, ne de gaz yani ne de madde. Ancak biraraya gelirlerse madde oluşturuyorlar. Bu anlamıyla maddenin yapıtaşı! Atomu, mikroskobumuzda büyütmeye devam ettiğimizde (aslında bunu yapabilecek mikroskoplar yok, fakat bilim adamları başka işlemlerle bunu yapabiliyorlar. Biz yine de yapabildiğimizi varsayalım) başta da söylediğimiz gibi, Güneş Sistemi’ne benzer bir yapıyla karşılaşıyoruz. Ortada bir çekirdek ve etrafında dolanan elektronlar. Elektron bulutundan geçip içeri dalıyoruz ve merkezde yer alan çekirdeği görüyoruz. Büyütmeye devam ediyoruz ve çekirdeğin içine bakıyoruz. Burada nötron ve protonlarla karşılaşıyoruz.
atom51

Elektronlar eksi yüklü ve hafif, protonlar artı yüklü ve ağır, nötronlar ise yüksüz ve ağır parçacıklar. Yük ve kütle gibi kavramlar atomları birbirinden ayırdetmekte kullanılıyor. Çünkü çok sayıda atom var ve bunların hepsinin, elektron, proton ve nötron sayıları farklı. Bir atomdaki elektronların sayısı, o atomun atom numarasını (AN) veriyor, bu sayı aynı zamanda o atomun çekirdeğindeki proton sayısına da eşit. Proton ve nötron sayılarının toplamı ise atomun kütle numarasını (KN) veriyor. Örneğin en basit yapıya sahip atomlardan biri olan helyumun atom numarası 2 ve kütle numarası 4 (yani 2 proton, 2 elektron ve 2 nötronu var) ve 4He2 şeklinde simgeleniyor. Havada bulunan oksijen atomunun ise atom numarası 8 ve kütle numarası 16 vb…
Daha sonuna gelmedik. Son bir gayretle proton ve nötronun da içine bakıyoruz ve orada da daha temel parçacıklar görüyoruz. Bunlara da “kuark” adı veriliyor. İşte, maddenin içine yolculuğumuzun “şimdilik” son durağı burasıymış gibi görünüyor. Buradan daha ileri gitmemiz mümkün değil.

Artık bir sonuç çıkarabiliriz: Maddenin en küçük yapıtaşı kuarklar. Kuarklar bir araya gelerek proton ve nötronları, bunlar ve elektronlar biraraya gelerek atomları, atomlar molekülleri, moleküller de maddeyi (elma örneği gibi) oluşturuyor.
Gördüğümüz kadarıyla atomdan öteye köy var, yani kuarklar! Peki kuarklardan öteye? Bunu henüz bilemiyoruz. Ancak bu, hiç bilemeyeceğimiz anlamına gelmiyor. Demokritus’tan bugüne katettiğimiz yol, bilimin, her alanda olduğu gibi, maddenin temel yapısını anlamada da bize vereceği daha pek çok şey olduğunun bir göstergesi.